Elliptic Curves with Large Rank over Function Fields
نویسنده
چکیده
We produce explicit elliptic curves over Fp(t) whose Mordell-Weil groups have arbitrarily large rank. Our method is to prove the conjecture of Birch and Swinnerton-Dyer for these curves (or rather the Tate conjecture for related elliptic surfaces) and then use zeta functions to determine the rank. In contrast to earlier examples of Shafarevitch and Tate, our curves are not isotrivial. Asymptotically these curves have maximal rank for their conductor. Motivated by this fact, we make a conjecture about the growth of ranks of elliptic curves over number fields.
منابع مشابه
Complete characterization of the Mordell-Weil group of some families of elliptic curves
The Mordell-Weil theorem states that the group of rational points on an elliptic curve over the rational numbers is a finitely generated abelian group. In our previous paper, H. Daghigh, and S. Didari, On the elliptic curves of the form $ y^2=x^3-3px$, Bull. Iranian Math. Soc. 40 (2014), no. 5, 1119--1133., using Selmer groups, we have shown that for a prime $p...
متن کاملRanks of Elliptic Curves with Prescribed Torsion over Number Fields
We study the structure of the Mordell–Weil group of elliptic curves over number fields of degree 2, 3, and 4. We show that if T is a group, then either the class of all elliptic curves over quadratic fields with torsion subgroup T is empty, or it contains curves of rank 0 as well as curves of positive rank. We prove a similar but slightly weaker result for cubic and quartic fields. On the other...
متن کاملOn the rank of certain parametrized elliptic curves
In this paper the family of elliptic curves over Q given by the equation Ep :Y2 = (X - p)3 + X3 + (X + p)3 where p is a prime number, is studied. Itis shown that the maximal rank of the elliptic curves is at most 3 and someconditions under which we have rank(Ep(Q)) = 0 or rank(Ep(Q)) = 1 orrank(Ep(Q))≥2 are given.
متن کاملElliptic Curves and Analogies Between Number Fields and Function Fields
Well-known analogies between number fields and function fields have led to the transposition of many problems from one domain to the other. In this paper, we discuss traffic of this sort, in both directions, in the theory of elliptic curves. In the first part of the paper, we consider various works on Heegner points and Gross–Zagier formulas in the function field context; these works lead to a ...
متن کاملSelmer groups and Mordell-Weil groups of elliptic curves over towers of function fields
In [12] and [13], Silverman discusses the problem of bounding the Mordell-Weil ranks of elliptic curves over towers of function fields. We first prove generalizations of the theorems of those two papers by a different method, allowing non-abelian Galois groups and removing the dependence on Tate’s conjectures. We then prove some theorems about the growth of Mordell-Weil ranks in towers of funct...
متن کامل